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The binding energies of transition-metal atoms of the 5d series adsorbed on a 54 transition
metal are calculated in the tight-binding approximation. The general features of the variation
of the binding energy with the number of adatom 5d electrons are similar for all the substrates.
It shows a parabolic behavior with a maximum of the order of the cohesive energy for the sub-
strate, and a subsequent sharper decrease as the number of adatom 5d electrons is increased.
The maximum is always located close to tungsten, as in the case of a tungsten substrate, where

it is between tungsten and rhenium.

Some measurements have been made recently
of the binding energy® and diffusion? of third-tran-
sition-series metals on various single crystal
planes of tungsten, using a field ion microscope
technique. The binding energies were deduced
from field-desorption data and are subject to some
uncertainty in their quantitative determination. 3
However the rise in the adatom binding energy to
a maximum for rhenium, similar to the maximum
in the cohesive energies for 5d transition metals,
and the subsequent sharper decrease as the num-
ber of adatom 54 electrons is increased seem
now well established (Fig. 1).

Several attempts at attaining a theoretical un-
derstanding of the binding energy have already been
made, based either on a tight-binding model, *°
or on a virtual-bound-state model.® Recently,
Newns has also discussed the importance of corre-
lation in this problem.’

It seems more reasonable to study the binding
energy of transition-metal atoms on a transition
metal, by using a tight-binding approach, as the
tight-binding d-band-broadening contribution to the
cohesive energy of transition metals dominates for
the majority of transition metals. %°

Here, we will calculate the binding energies of
the 5d transition-series atoms on a 5d transition
metal, using a tight-binding model, taking into
account somewhat more realistically some param-
eters, such as the real crystalline structure of the
substrate and the degeneracy of the d band. But
consequently, we are only able to take into account
self-consistency in a phenomenological way, and

our results are particularly valid for adatoms
having approximately the same number of d elec-
trons as the substrate.

We use a moments technique, already used with
some fair success to describe various properties
of transition metals. *®° The method and the ap-
proximations have already been described else-
where. 10 Let us just recall that we are using a
Hartree scheme with a tight-binding description
of the d band, neglecting the contribution of the s
band and of s-d mixing. As usual, we use a two-
center approximation involving two kinds of over-
lap integrals, the crystalline ones a, and the
transfer type B, involved, respectively, in the
shift of the d band and its width. The overlap in-
tegrals a and B are strictly defined as 5X5 ma-
trices!® but, in fact, due to the smallness of the
crystalline ones, one can take an average value
a equal to the shift of the band for them. On the
other hand, following the notations of Slater and
Koster, 1 and from the second moment, one can
define the square of an effective overlap integral
g% as 5p%= ddo®+ 2ddn®+ 2dd6®. B%is also directly
related to the width of the d band. '

One starts from aperfect transition-metal M sur-
face and afree transition atom A, and then the atom A
is absorbed on the surface of M, the coupling between
them being established through the overlap inte-
grals. The binding energy Ug(A - M) of the adatom
A can then be defined as the difference between the
total energy before and after the atom A had been
absorbed on M. Clearly the expression of Ug(A - M)
will involve the variation of geometry of the sys-
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FIG. 1. Theoretical and
experimental results (Ref.
1) for the binding energy
of the 5d elements on the
(100) and (111) planes of
\, bee tungsten.
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tem when A is absorbed, the corresponding change
in the overlap integrals, and the difference between
the number of d electrons of A and M and of their
energies.

For simplicity, we will divide the computation
of Ug(A — M) in two steps: the first one, the compu-
tation of the binding energy of an adatom M on the
same metal surface M, Ugz(M - M), and the last one,
its change due to the replacement of the adatom M
by an adatom A:

UglA -M)=UgM -M) +6UM -~ A) . (1)

Let us first give some definitions useful in the
following: The semi-infinite metal M has N
atoms in bulk and NZ, electrons in its d band.

Its Fermi energy is E and its d atomic level energy
Ey. The free atom A has Z, d electrons having

the energy E,. The overlap integrals correspond-
ing to the metal M are denoted by « and B, and

those corresponding to a binding between an

atom A and an atom of the metal M by B,y, the
change in the o ones being neglected.

We can also define the moments of order » of
the density of states of the system, such as M,
being that of the total density of states, m, that
of the density of states normalized to unity, and
U1, the corresponding centered moment.

The two first moments of the density of states of

a system, corresponding to three different situa-
tions of interest, namely, (a) perfect semi-infinite
metal M, (b) adatom M adsorbed on a semi-in-
finite metal M, and (c) adatom A adsorbed on a
semi-infinite metal M, have been calculated using
the same technique as described in previous ar-
ticles. ' They are listed in Table I. The number
of first neighbors of a given atom in the metal M is
23and 2p is the number of added bonds when an
atom is adsorbed on M. The constant C<1 depends
on the surface crystallography of M. In fact, in the
second moment we will neglect the terms in a?
compared with those in Bz, as the shift of the d band
is always much smaller than its width.

Let us now first calculate the binding energy of
an atom M on the same metal M. Taking E, as
the zero of energy, Up(M —M) is simply written
as

~ UM -M)=N " En (E)dE - N [ " En,,(E) dE
(2)

where n,(E) and n,,(E) are, respectively, the
density of states corresponding to the situations
(b) and (a) (cf. Table I).

This variation of energy is computed using for
the density of states Gaussians fitted to their re-
spective first moments*® given in Table I and
labeled by (a) or (b) according to the situation of
interest. We then get
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TABLE I. First moments of the density of states. As we consider differences on energy, the influence of the num-
ber of atoms in the surface is of smaller order and can be neglected.

@)

Perfect semi-infinite () )?
metal M Adatom M on a metal M Adatom A on a metal M
My=10N My=10(N +1) My=10(N +1)
M{=10N(Ey+a) M1=10N(EM+a)+EM+§a M1=10N(E”+a)+EA+§a
My=10N(Ef+o*+2Eya +2 3 My=10N(Ejj+a®+2Ey0 +236%)-  My=10N(Ej+ 0’ +2Eya +236%)
+10E} +20pﬁ2+20EM§ a +E2 +2pBLy, +§a(EA+EM)
+10Ca? +Ca?
my=1 my=1 mo=1
——M = 1/_7 - Ll gy L
™ =70 x number m=Ey +a my=Ey+a N<1 3)a my=Eyto N(EM Ed-y
of atoms my=Ejy+0a’+2E,0 + 246 my=Ey+0’+2Eya +2 46 x(l—é’)a
-1, 2(5— 3—3E of1-2 =B} +ob +2E 0 + 236 — 2 (B} - 52
N2 =) -y Eu 3) " Euta M ~NEn—E3)
1 2 g2y 2
-yeia=-o. N DB = Baw) = 7 B3 =p)
2 _b\_12
_NEMa(l 3) Naa(E”'-EA)
—-=a%(1-0)
Ho=mg Bo=1 Bo=1 Bo=1
p1=0 =0 1y1=0 Ko=
2 2 co 2_2 2 o LB —E, )+
Mo =mg—my Ky =238 Ho=25 8" = (3-1)8 Bp=25p"+ By —Ep )+
2
o [~ 2
+N (C 3) x(EM—EA)<1—'§)

2 2
- 3B C=p)= b =B

2
L (o2
N 3
“The self-consistency is not well treated as we assume that the atom A adsorbed on M has the same energy level as
when it is isolated. A discussion of the validity of this approximation will be given later on.

1/2 R P . . .
Ha e"‘% /2 (1 B ¥ _£> The cohesive engrgy ‘o the metal M is written in
o 23 the same approximation as

Us(M -M)=10(

2
- E,=10(10/2m) 26 XF 2= Z a;
-ZMa(l—g-a—a) , 3 ° * S
' then the binding energy Uz(M ~M) can be written

where as

Xp=(Ep=-my,) /(I»laa)”z ’
the Fermi level E; being defined by

UB(M—M)=E0<1— az_ap) +%Zua(1— f) . (4)
£ The overlap integral « is always negative, and
_ 1 f F < (E =m,)? therefore Ug(M — M) is always smaller or equal to
Zu= (211;120)1; 2 eXP\ - 21 e the cohesive energy of M. The number of added
Xp 2 bonds 2p depends on the crystallography of the
= ——117-2- f exp(—%)dX . surface of M. Ug(M -M) is equal to E, when one
(2m) 0 adds half of the total bonds between nearest neigh-
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TABLE II. Relative binding energy of an atom M on
the four low index planes of a metal M of structure bece
(8'%/B%=0. 25) and neglecting the shift of the d band
(=0). The correction due to the shift of the d band
would be negligible as, for example, taking an upper
value of 0.5 eV for tungsten, the correction to the
binding energy on a (110) plane of 7 eV would be 0.6
eV, i.e., of the order of a few percent.

Plane (100)  (110)  (111)  (112)
UM =M) 010 0.95 0.75 1 0.93
¢
4 2 4 3
' 1 2 3 3

bors (p = 3) and in that case one gets the same re-
sult as that of a broken-bond model.

It may be reasonably assumed that the overlap
integrals between second nearest neighbors are
negligible in an fcec structure, as opposedtoabce
structure.! Inthis case, the computation of U,(M
- M) is still straightforward, and labeling by a prime
the quantities referring to second nearest neigh-
bors, one has

_ (3-p)B2+(3’'—p")B"
UB(M _M)‘Ec(l - 2(332‘*‘%,&'2) )

+%zua(1 -%’) . (5)

As has already been emphasized, the integral
« is much smaller than the 8 ones, in particular
the contribution of the second neighbors to the
shift of the band is negligible. We can therefore
neglect them to compute the relative binding en-
ergies for various surface crystallograpy for a
surface metal of structure bce or fce (Tables II
and III). The agreement with the experimental
results of Plummer and Rhodin is good, as far
as the order of magnitude of the binding energy of
tungsten on tungsten is concerned, the cohesive
energy of tungsten having a value of 8.7 eV, but
not as far as the relative magnitude with the index
of the surface plane is concerned. One can notice
also that our results are similar to those given by
a pairwise interaction model, in spite of a com-
plete difference in the assumptions of the cal-
culation.!? The discrepancies with the experimental
values are perhaps due to the various experimental
uncertainties® which can lead to experimental re-
sults for the binding energies which are somewhat
controversial. In our model, it can also be due to
our neglect of relaxation effects of the surface plane
for the adatom. The relaxation effects might be
important for example for the (110) and (112)
planes, which are possible planes for the stacking
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faults in bce crystals.

Letusnow calculate the variation of the binding en-
ergy 6U(M - A) when one replaces the absorption atom
M by an adsorbed transition atom A of the same period.
This variation 6U(M - A) is related to the variation of
the total energy 6E when one replaces M by A

oU (M"A)=—6E+(ZAEA—ZMEM) . (6)

If n,)(E) and n () (E) denote, respectively, the den-
sity of states of the system, metal M plus adsorbed
atom M, and metal M plus adsorbed atom A, cor-
responding to the moments of the cases (b) and
(c) given in Table I, one has

SE=(N+1) [7F¢ En(o)(E)dE -~ (N +1) /"™ Eng,(E)dE
(N+1) Zy=(N+1) [*F . (E)dE
EFc

NZy+Zy=(N+1) [ Fn,(E)dE ,
then

(N+1) [8En ) (Er) + [ " on(E) dE]= 2, - 2y ,
where

0Ep=Ep.~Epy, n(E)=n(E) —n)(E) .
One can then write

E
E=(N+1)[8Ep Epynn)(Ep) + [ T°E6n(E)dE] .

Using for the density of states Gaussians fitted
to their first moments, as in the computation of
Us(M - M), one gets

SUM-A)=(Zy -Zy)E, - Epy)

(EA—E )2 .[J._aallz -lez
+10 ———————M—Z“ o e™F
%

1/2
+10p<%§$) B -2, (1)

If E, denotes the cohesive energy of the metal
M and Ep its Fermi level, the variation of the
binding energy when one replaces the adsorbed
atom M by A is finally written as

SUM ~A) = (24 — Zy)(Ey —E ) + %fui
2a

TABLE III. Relative binding energy of an atom M
on the low index planes of a metal M of structure fcc.

Plane (100) (110) (111)
Ug (M~ M)
——————calc 0.83 0.92 0.75
EC
» 4 5 3
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X [(Eq ~Ey)?+2p(84y - B9)] . (8)

Taking into account also the second nearest
neighbors, we have

SUM =~ A)= (2, — Zy)(Ex —Ef) + Ecz*f—”"‘
2

X[(Esx-Ey?+2p(B2 -8 +20" (B2 - B8'D] . (9)

The relative variation of the binding energy is
given by (9). Following the numerical values of
the 54 atomic level given in Ref. 13, one can as-
sume that

EA _EM= —K(ZA —ZM) >

where K is positive and has a value of 1.3 eV for
the 5d transition-metal atoms. Equation (9) can
then be written as

SUM = A)=-K(Z, - Zy)?
+(Zy=ZNEy—Ep)+CIK Z, - Z,)?
+2(Bau-B)+20" (B& -6], (10

with C=(E,+Zy a)/2py,-

Let us now say some words about the self-
consistency problem. Until now we have neg-
lected any charge transfer between the adsorbed
atom and the surface metal. Allan and Leng-
lart’ have studied this effect in a simplified
tight-binding scheme. From their results it
can be assumed that the main consequence is to
renormalize the atomic level E, in an effective
one E;. One has then to replace (in the crystal),
E, by E} and in the balance in energy one has to
subtract Z,(E} —E,) -30Z,(E4y —E,). Neglecting
the second term, and assuming that E, - E is
proportional to E} —Ey,® that is

Ey—Ey=)NEs-Ey),

with 0< A<1 (from Ref. 5 a reasonable value for
X seems to be 0.5). One has just to replace E,
by E} in Eq. (9) to obtain a better self-consistent
variation of binding energy.

Let us now give a numerical computation of the
behavior of this variation of the binding energy
6U(M -~ A) for various 5d transition metals. For
example, for a metal surface of tungsten, one has

Ep=Ey+a .

Neglecting as a first approximation the variation
of the B integrals one gets

SUM—A) =(Z4 —Z)2(CANK? - 2\K) +a(Z, - Z,) .
(11)

From the experimental value of 8.7 eV of the
cohesive energy E, of tungsten, equal to 10

X (Uoe/2m 2~ Z,y @, one gets for C a value of 0.9
eV~! if one neglects a, or of 1.0 eV-! taking into
account a value of —0.2 eV for a. Taking also a
reasonable value of 0.5 for A, one has for 6U

6UM=~A) = - (0.25 eV)(Z, - Zy) 2+ a(Z, - Z,) .

The relative binding energy has then a parabolic
variation with the variation of charge.

It is rather straightforward to obtain the location
of the maximum of the relative binding energy, and
one gets

adU a

—— =0 for Z,=2, - —_—"2(>\K—cxzxz) .

The maximum is then always shifted to the right
of tungsten by about 0. 35.

Let us now estimate the influence of the change
in the overlap integrals which is far from being
negligible in some cases. Indeed, the overlap in-
tegrals 8,4 are decreasing very sharply for atoms
in the series on the right of tungsten.®

One can estimate that for an adsorbed atom of
rhenium for example, one can take® for the differ-
ence between transfer overlap integrals of tungsten-
tungsten and rhenium-rhenium '

BWW "BReReQO'l ev ’

and for the difference with the mixed transfer
overlap integral tungsten-rhenium, an estimated
value of half this one:

Bww — Brew =20.05 eV,
with

Bww =0.75 eV,
so that

Baw — Biew =20.07 eV,

For usual surface crystallography, p is equal to

3 or 4, so that 2p(BE.y — Bey) ~ 0.6 eVZ:* This
term would be then of some importance for the ad-
sorbed atoms on the right of tungsten in the 54

series.
The binding energy of the 54 transition atoms on

a (111) plane of tungsten is shown in Fig. 1. Fi-
nally we get for this variation, the following char-
acteristic features: maximum of the order of the
cohesive energy of tungsten located between W and
Re; parabolic variation with the number of 5d elec-
trons with a sharper decrease as the number of
5d electrons is increased. These characteristic
features are, respectively, mainly due to three
different effects, typical surface effect connected
with the band structure of the metal, variation of
the atomic levels E, and E,, and variation of the
overlap integrals B.

The general trends of the variation of the binding
energy are then roughly similar to the experimental
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FIG. 2. Theoretical curve for the
binding energy of the 5d elements on
the basal plane of hcp rhenium.

results of Plummer and Rhodin.! Nevertheless our
calculated curve exhibits a smaller decrease on the
left hand of tungsten. The much larger experimen-
tal value of the binding energy of rhenium on tung-
sten compared to tungsten on tungsten receives no
convincing explanation in our model.

One can easily compute the binding energy of
transition adatoms on other various surface transi-
tion metals of 3d, 4d, or 5d series using Eq. (10)
and following the same steps as in the computation
for tungsten. The main features of the variation
of the binding energies with adatom 54 electrons
are the same for other 5d transition-metal sub-
strates as for tungsten. The curve for a substrate
of rhenium is shown, for example, in Fig. 2. The
maximum of the binding energy given by (4) is of the
order of the cohesive energy of rhenium and is lo-
cated close to tungsten. For other metal surfaces,
assuming a reasonable variation for the Fermi en-
ergy of substrate, such that

EF"'EM'z 0.5(ZM—5) eV ’

we find some similar curves for the variation of
binding energy with a maximum always located
close to tungsten to its left. The curves have also
the same sharp decrease on the right of tungsten
due to the variation of the overlap integrals. It

T T
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would be therefore very interesting to perform
experiments similar to those of Plummer and
Rhodin on some other substrates to verify the kind
of behavior for the binding energies we calculated.
Some measurements of the binding energies of 54
adatoms on iridium are currently being done by
Gallot.

Interaction energies between adatoms could be
also easily done using the same technique. These
energies are only of some importance for neighbor-
ing adatoms. But in any case they are rather
small compared to the binding energy of a single
adatom, with a maximum of the order of 1 eV. If
one builds a whole surface plane of N, adatoms on
a substrate of the same metal, one finds, as it
should be, a net gain of energy of N,E,, where
E, is the cohesive energy of the metal. It seems
therefore reasonable that the computation of the
binding energy of a single adatom and of the cohe-
sive energy of a bulk metal must be done in the
same framework. With this in mind it is not ob-
vious that electron correlation plays the consider-
able role emphasized by Newns” in the binding en-
ergy problem, as it is not mainly responsible for
the cohesive energy of transition metals.®!® This
would not be necessarily the case in the general
problem of chemisorption.
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The elegtronic structure of binary alloys is discussed for a system in which both the atomic

energy levels and the hopping integrals are random quantities.

This paper is a detailed study

of the generalization of the coherent-potential approximation (CPA) introduced earlier by the
present authors. We show that a locator description provides a particularly suitable formal-
ism for setting up this generalized problem and how, with the aid of a simple device, configura-

tion averaging may be performed by the use of established techniques.
used is, as in the case of the usual CPA, a single-site one.
are obtained that must be solved simultaneously; these replace the single CPA equation.

The approximation
Three self-consistent equations
Nu-

merical results are displayed for a series of alloys, and a discussion of certain aspects of the
theory, such as its moment-preserving properties, is also included.

I. INTRODUCTION

Much of the work on the electronic theory of
binary alloys has been a development of the mul-
tiple-scattering formalism of Lax.! At present
a rather satisfying stage in the theory seems to
have been reached with the introduction of the co-
herent-potential approximation (CPA) by Soven,
and its subsequent developments.®* The simplicity
of the CPA arises from the fact that formally it can
be viewed as a reduction of the alloy problem to one
of a single impurity in a self-consistently deter-
mined effective lattice. In the usual tight-binding
model, only the atomic energy levels are assumed
to be random, i.e., to depend on the occupation of
sites by either of the constituent species. In the
effective-medium approach one replaces the aver-
aged alloy by a periodic lattice of “effective
atoms, ” whose effective localized energy is to be
determined, and whose coupling (via hopping inte-
grals) is the same as in the real alloy. One now
introduces a single real atom into the effective

lattice (this replacement, it is assumed, does not
affect the coupling, but has only the effect of pro-
ducing a perturbation localized on the impurity
site itself) and determines the condition that on the
average (the impurity can be either of two species)
no scattering occurs, i.e., the average single-
site { matrix is zero. This gives the CPA self-
consistency condition.

The introduction of this effective lattice sim-
plifies the derivation of the self-consistency equa-
tion, but it is not essential. For example, we can
use, if we wish, the virtual crystal—or indeed the
pure lattice of either of the constituent atomic
species—as the “unperturbed” lattice, and then
perform the more complicated multiple-scattering
calculation. The difficulty then arises of dealing
with multiple-occupancy effects correctly. This
has been done by Leath, ° among others. Using a
diagrammatic propagator expansion technique,
Leath shows how to sum all non-crossed-line dia-
grams in the perturbation series. Since such dia-
grams have a single-site nature, their summation



